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Presentation OutlinePresentation Outline

• SSPARC
• Process Development
• Architecture Study Results
• Complete Design Support
• Future Plans
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SSPARC Purpose and Organization SSPARC Purpose and Organization 

• Problem: Current space system design practices result in 
high costs and long development times.

• MIT, Stanford, Caltech & the Naval War College have 
initiated a Center of Excellence in Space System, Policy, 
& Architecture sponsored by the NRO.

• Question: Can new paradigms be created to give designs 
and capabilities that are rapid, inexpensive & flexible?

• Three-pronged Approach
– Develop, implement, demonstrate, and improve process
– Develop and improve tools 
– Develop for the customer a needed product
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SSPARC Research MethodsSSPARC Research Methods
• Developing tools and processes with application to NRO product

• Product: Terrestrial Observer Swarm (TOS)
– A-TOS: Preliminary in situ mission 

– B-TOS: Architecture Study 

– C-TOS: Spacecraft Design 

• Product Motivation:
– Ionosphere disturbs propagation of EM waves

– Characterize Ionosphere using a topside sounder for AFRL model, 
which uses Vertical Total Electron Content (TEC), Electron Density 
Profile (EDP), Beacon Angle of Arrival (AOA)

– Payload B: NRO Black Box
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BB--TOS Payload Mission OverviewTOS Payload Mission Overview
Electron Density Profile (EDP)Electron Density Profile (EDP) Beacon Angle of Arrival (AOA)Beacon Angle of Arrival (AOA)

Ionosphere TurbulenceIonosphere Turbulence Payload “B”Payload “B”
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Lifecycle Costs vs. UtilityLifecycle Costs vs. Utility
(Entire Tradespace: 4,033 Architectures)(Entire Tradespace: 4,033 Architectures)
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Product Development & EvaluationProduct Development & Evaluation

Finite 
R

esources COSTFinite 
Resources

utilityPoor
Design
Vector

Finite 
Resources

Infinite Need 

Finite 
Resources

cost

Satisfied 
NeedOptimal

DesignDesign
VectorVector

Defines
Architecture

= Utility



SSPARC: Flexible Concept Formulation Slide 8 New Design Paradigms: June 26, 2001 

Product Development & EvaluationProduct Development & Evaluation
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Phase I:
Understand

Needs

Phase II:
Model

System

Phase III:
Evaluate

Architectures

Identify Customer Value Proposition, 
Objectives, Scope, and Constraints for the Space System

Identify Customer Value Proposition, 
Objectives, Scope, and Constraints for the Space System

Investigate Utility Attributes, and Conduct 
An informal Utility Function Interview

Investigate Utility Attributes, and Conduct 
An informal Utility Function Interview

Select AttributesSelect Attributes

Quantify System AttributesQuantify System Attributes

Construct and Validate
Attribute and Cost Models

Construct and Validate
Attribute and Cost Models

Select Architecture
Trade Study Variables

Select Architecture
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Verify Frontier Architectures
Meet User Needs

Enumerate TradespaceEnumerate Tradespace

Bold Outline
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Design Vector VariablesDesign Vector Variables

• Circular orbit altitude (km) 1100, 1300
• Number of Planes 1, 2, 3, 4, 5
• Number of Swarms/Plane 1, 2, 3, 4, 5
• Number of Satellites/Swarm 4, 7, 10, 13
• Radius of Swarm (km) 0.18, 1.5, 8.75, 50
• 5 Configuration Studies Trades payload, 

communication, and 
processing capability

4,033 Architectures
73 Hrs total computation time with 8 Pentium IIIs

4,033 Architectures
73 Hrs total computation time with 8 Pentium IIIs
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Attributes to Utility:MAUA ResultsAttributes to Utility:MAUA Results
1. Mission Completeness: Sub-set of missions performed

2. Spatial Resolution: Arc length of Earth between measurements

3. Revisit Time: Time between subsequent measurements of the same point 
above the Earth

4. Latency: Time delay from measurement to end user

5. Accuracy: Measurement error in angle of arrival data

6. Instantaneous Global Coverage: % of Earth’s surface in view 
between subsequent measurementsUtility of Instant Global Coverage
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Model Analytical CapabilityModel Analytical Capability

• Variation of orbital geometries 
• Multiple swarm size and density options
• Satellites have individually varying 

functionality
• Evaluated more than 4,000 Architectures

Model currently produces a focused tradespace,
not a single-point architecture—key to flexibility
Model currently produces a focused tradespace,

not a single-point architecture—key to flexibility
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Frontier Architecture Frontier Architecture Design VectorsDesign Vectors

Point A B C D E
Altitude (km)
Num of Planes
Swarms/Plane 1 1 1 1 2
Satellites/Swarm 4 7 10 13 13
Swarm Radius (km) 0.18 1.5 8.75 50 50
Functionality Study

<--  1100   -->
<-- 1 -->

<--  #5  -->

Study
Type M D
Number 1 3+
Payload (Tx) Yes No
Payload (Rx) Yes Yes
Processing Yes No
TDRSS Link Yes No
Intra-Swarm Link Yes Yes

5
Recall:
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Frontier Attributes, Utility, & CostFrontier Attributes, Utility, & Cost
Point A B C D E
Spatial Resolution (deg) 4.36 5.25 7.34 9.44 9.44
Revisit Time (min) 805 708 508 352 195
Latency (min) 3.40 3.69 4.36 5.04 5.04
Accuracy (deg) 0.15 0.018 0.0031 0.00054 0.00054
Inst. Global Coverage 0.29% 0.29% 1.15% 2.28% 4.55%

Utility 0.9835 0.9914 0.9973 0.9992 0.9994
IOC Cost ($M) 90 119 174 191 347
Lifecycle Cost ($M) 148 194 263 287 494

Frontier architectures can be evaluated using 
attributes in place of non-dimensional utility values

Frontier architectures can be evaluated using 
attributes in place of non-dimensional utility values
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Complete Design SupportComplete Design Support

• Process started with MIT Space Systems Lab
• Refined Spring of 2001 at MIT SSPARC
• C-TOS spacecraft design project, summer 2001

– Starting with B-TOS results design mother / daughter ships
– Using Integrated Concurrent Engineering (ICE)
– Distributed team at MIT, Caltech, and Stanford
– Brief design to NRO 23 August 2001

• From architecture study wrote “requirements” for spacecraft
• Systematic means of moving from policy-level detail to 

hardware-level detail
• Systematic means of clarifying user needs
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Complete Design SupportComplete Design Support
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Future PlansFuture Plans

• Detailed spacecraft design C-TOS
• Apply to case studies besides TOS missions
• Begin to see possible application for both more 

detailed design and for higher-level concept decisions
• Verify further and improve flexibility of MAUA
• Consider broader cost function
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BB--TOS Design Vector VariablesTOS Design Vector Variables
Variable Rationale
Apogee Altitude Specifies orbit/relationship to ionosphere
Perigee Altitude Specifies orbit/relationship to ionosphere
Number of Planes Key to meeting global coverage needs
Swarm per Plane Key to meeting global coverage needs
Satellites per Swarm Local coverage resolution
Size of Swarm Local coverage resolution
Number of Sounding Antennas Captures functionality trade
Sounding Captures functionality trade
Short Range Communications Captures functionality trade
Long Range Communications Captures functionality trade
On-Board Processing Captures functionality trade

Large 
Scale 
Arch.

Swarm 
Arch.

Vehicle 
Arch.

•Payload, four choices available:
– 0 = none
– 1 = send
– 2 = receive
– 3 = both

•Communication and processing, two 
choices available:

– 0 = none

– 1 = yes (all)
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Configuration StudiesConfiguration Studies

• Study 1:  All spacecraft are independent
• Study 2:  Mothership processes and downlinks
• Study 3:  Distributed processing
• Study 4:  Mothership dedicated to processing and downlink (no payload)
• Study 5:  Mothership processes, downlinks, and has payload transmitter

M = Mothership D = Daughter

Study
Type M D M D M D M D M D
Number 4+ 0 1 3+ 1 3+ 1 3+ 1 3+
Payload (Tx) Yes n/a Yes Yes Yes Yes No Yes Yes No
Payload (Rx) Yes n/a Yes Yes Yes Yes No Yes Yes Yes
Processing Yes n/a Yes No Yes Yes Yes No Yes No
TDRSS Link Yes n/a Yes No Yes No Yes No Yes No
Intra-Swarm Link No n/a Yes Yes Yes Yes Yes Yes Yes Yes

1 2 3 4 5
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Swarm Radius = 0.18 km(next slide)

Swarm Radius = 1.5 km

Swarm Radius = 8.75 km

Swarm Radius = 50 km

Radius of the swarm is the main differentiator between architectures of high utilityRadius of the swarm is the main differentiator between architectures of high utility
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MultiMulti--Attribute Utility FunctionAttribute Utility Function
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Sub-system Requirement Approach
Power Full ops at end of life, peak and 

avg
Size battery and solar cell

Thermal Acceptable temp range at eol, 
temp range

Energy balance

Payload List from customer Set requirements for other systems

Comm Comm through TDRSS and with 
all daughters

Link budget

Attitude Set by payload Select and size sensors, wheels, and motors

Structure Not fail or resonate 15% mass fraction budget

C.D.H Support operations, survive 
environment

Recall ops scenarios, develop link budget inputs, select and 
size computers and recorders

Propulsion Provide deltaV and max impulse 
to support ops scenarios

Select and size motors, possibly combined with attitude, 
consider drag, deorbit, margin, NOT differentials

Configuration Fit in launch vehicle and config in 
3D

Sketch or CAD

Mass Launchable Sum up systems’ masses

Reliability No single-point failures of 
vulnerable systems

Check batteries, computers, sensors, thrusters, thermal

Cost Not exceed reasonable cost SMAD cost estimating relationships

Subsystem Breakup and DescriptionsSubsystem Breakup and Descriptions
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MothershipMothership

6 omni “whip”
antennae for payload

High gain antenna
for data relay (D ~ 0.5m)

Body mounted
Si solar cells

Omni antenna
for swarm comm

Basic shape can be changed, 
assumed cylinder for first iteration

H = 1.5m

D = 1.5m
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• Spacecraft for architecture “C” appears to be 
feasible.

• Mass was up 17%, and power down 21%, from 
estimates made as part of the architecture study

• Mothership cost (~$45M) is a significant fraction of 
the total spacecraft budget (from the architecture 
study, ~$101M)

• Comm. requirements were severe for TDRSS relay 
(~10Mbps) and would compete with ISS and Shuttle 

• Body mounted solar cell area approaching limit for 
power needs (~150W)

Preliminary Mothership Design ResultsPreliminary Mothership Design Results
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Extending MAUA For Other CostsExtending MAUA For Other Costs
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